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Polymer Science 2024/25

Exercise 9 — Solution

1. As already mentioned in the previous exercise sheet, Rouse's model does not work well
for diluted solutions because it does not take hydrodynamic effects into account (for
this, we need the Zimm model). However, it works well for chains in a polymer melt as
long as entanglement effects are not important (in this case, the other chains act as a
very viscous solvent).

i) Rouse-like behavior can therefore be expected if the molar mass, M, is less than a
certain critical molar mass, M. = 2M.. What does M. mean here? Explain, using the
entanglement network model, how we can determine M. from the shear modulus,
which corresponds to the rubbery plateau.

The entanglement molecular weight M. represents the characteristic molar
mass between entanglement points in a polymer. Entanglements occur when
polymer chains become so intertwined that their motions are significantly
restricted by neighboring chains.

Let us recall the entanglement network model: in the rubbery plateau region,
a polymer behaves like a crosslinked network. The shear modulus G in this
region arises from entanglement interactions between chains, and can be
related to the number of entanglements per unit volume Ne. For a polymer in
the rubbery state, the shear modulus is given by G = NekT (this is analogous to
the shear modulus of an actual elastomer, where the shear modulus is G = NKT,
with N representing the number of subchains per unit volume (which
corresponds to the chain lengths between crosslinking points). The
entanglement molar mass, M,, can be expressed as the product of the number
of segments between entanglement points per unit volume (N,/N,) and the
density, p:

N,
M, = aP
Ne
Where N ,is Avogadro’s number. Thus, we can relate the shear modulus to the
molar mass between entanglement points by combining the two expressions:

Bl School of Engineering Dr. Daniel Gorl EPFL STI IMX LMOM
Institute of Materials daniel.gori@epfl.ch MXG 037, Station 12
Laboratory of Macromolecular Imom.epfl.ch CH-1015 Lausanne

and Organic Materials 1



E P F L School of Engineering

Institute of Materials
Laboratory of Macromolecular
and Organic Materials

Ngp kTNyp RTp

M, =
¢ N, G G

ii) Rouse's model can also be used to describe fast relaxation modes (high p) even if
M >> 2M., because these are associated with relatively localized movements that are
not hindered by the entanglement. In contrast, slow relaxation modes that involve
the whole chain are blocked by entanglement. If we admit (and this is a big
simplification!), that the entanglement mainly affects 71, what can we say about 7y if
the effects of the entanglement are permanent? What does Ni, represent in this case?

Entanglement restricts the chain’s motion and leads to a change in the
relaxation behavior, particularly for the slow modes. If we consider the
entanglement to have a permanent effect on 71, the slow relaxation mode (p =
1) becomes infinitely long. The polymer chain is effectively trapped in place,
and prevented from fully relaxing or moving past the entanglement points.
This is analogous to the situation in a chemically crosslinked network, where
the polymer chain motion is restricted by the crosslinks.

In this case, N represents the entanglement density, which is the number of
entanglement points per unit volume of the polymer (compare to Question 3v
of the last sheet).

iii) We have seen, however, that the entanglement is not permanent and that we can
model disentanglement using the tube model. This model implies that a chain can
recover its random conformation and therefore relax all the stresses resulting from
a deformation by diffusing outside a tube, which represents the topological
constraint imposed by its neighbors, i.e. entanglement. We can assume that the
diffusion coefficient of a chain along this tube is proportional to 1/M. Where did this
result come from?

The diffusion of a polymer chain inside the tube model is described by the
process of reptation, i.e. the idea that the polymer chain diffuses along the
tube created by entanglements. Over time the chain moves out of its confining
tube, thereby relaxing the entanglement-induced stresses.

Rouse's model still governs the local motions of the chain segments within the
tube. This means that the diffusion of chain segments within the tube is
governed by the same dynamics as predicted by the Rouse model. According
to Rouse, the diffusion coefficient is proportional to 1/M (Slide 280).

iv) Knowing that the length of the tube must be proportional to M, demonstrate that the
disentanglement time, 7y, is proportional to M3.
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We start with Fick's law which says that the distance diffused in time ¢ is given
by x2 = Dt. The disentanglement time 74 corresponds to the time it takes for
the polymer chain to diffuse a distance equal to the length of the tube L and
thus "escape” the entangled region. Using Fick’s law, we can write:

LZ = DTd

Mzocﬁrd = 14 x M3

v) Ifyou have access to Excel, Origin, etc., plot in logarithmic scales

m
G(t) = N, kT Z et/
p=1

as a function of t between 0.01 and 100000 s, taking m = 5, » = 100000 s and
7 = 40/p?. Here, we simulate the effect of entanglement by taking an arbitrarily
large value for 71. Does this result remind you of anything?
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Plot the result on a logarithmic scale! The result is supposed to remind you of

the typical rheological curve for a polymer, which shows the evolution of the
modulus over the logarithm of the time (or the temperature, in accordance to
the time-temperature equivalence) as the polymer undergoes different
relaxation processes.

e Atshorttimes (t < t5): the system behaves like a glassy state, where the
modulus is high, due to the very slow relaxation of the polymer chains.

e At intermediate times (around ts to t1): the first relaxation time 1, is
arbitrarily large, simulating a strong entanglement effect, so that the
system exhibits a rubbery plateau. The polymer has partially relaxed
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and shows a relatively constant value for the modulus in agreement
with the static model of an entanglement network.

e At long times (t >11): The system transitions to liquid-like behavior,
where the modulus decreases as the polymer chains are fully relaxed
and the material behaves more like a viscous fluid.

Be careful with this interpretation, though! In a real polymer, the modulus in
the glassy state is some three orders of magnitude higher than the rubbery
plateau. Here, the value is rather small because by taking m = 5, our model is
no longer valid for t <15 = 40/25, i.e. less than one second. In any case, this
type of model is anyways not valid in the glassy state because the viscosity as
well as the relaxation times effectively become infinite below T;. For T < Tg, the
modulus is dominated by van der Waals forces and not by conformational
changes (we ignore for a moment, that small chain segments can still move
below Tg).

2. We will now simulate the behavior of a freely jointed polymer that is slightly cross-
linked.

i) Itisassumed that the crosslinking points are separated along the chains by ny bonds
such that n >> ny >> m and that the positions of the crosslinking points are fixed by
the macroscopic deformation. In this case, relaxations involving chain segments
longer than ny are blocked, leading to infinite relaxation times for these modes:

fOnZIZ "
Tme’ fOT m>1,p>p, (1)
Tp = @ for p<py

Express px (the critical mode number where relaxations become blocked) and zx (the
maximum relaxation time for modes that are not blocked) in terms nx!

The number of segments involved in mode p is equal to n/p. The critical value
of p, denoted as px, below which the movements are blocked corresponds to
ny:

n

Px n,

For this critical mode, the relaxation time 7, which corresponds to the longest
unblocked relaxation time is:
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_ §onil?
B = kT
ii) According to the phenomenological models (springs and dashpot) generalized for a
linear viscoelastic material, the relaxation shear modulus is given by

n
G(t) = Go + Z Gie t/m
1

Show that the effective value of Go is NxkT, where Ny is the number of crosslinking
points per unit of volume. Have you seen this result before?

Let’s use Rouse’s expression for the time-dependent shear relaxation
modulus, which for a polymer with crosslinks can be written as (in analogy to
our last Exercise Sheet). In the present case, 7p = © if p < py, i.e. if p <n/nx.

n/ny m
= NkT “t/® 4+ NKT ~t/ o Sl f >
G(t) = 1e + e Tp~m, or p =n/n,
p:

p=n/ny

where N is the number of polymer chains per unit volume (chain density).
Here, the first sum corresponds to the modes p <px=n/nx, where the
relaxation times are infinite due to the crosslinking (7p = ). The second sum
corresponds to the modes p > px, where the relaxation times are finite.

For the long-time limit, the second sum tends to zero because t > Tp» while the
modes with p < px do not relax and contribute a constant value to the shear
modulus, leading to:

n/ny n/ny

nNkT
Go = NkT e t/® = NkT Z 1= = N, kT
=1

Ny

b p=1

where Ny is the number of crosslinks per unit volume. So, if £ >> 74, we find the
behavior of an ideal elastomer with a shear modulus that is proportional to
the crosslinking density.

Note that the model is only valid for times in the range 7, < t < 0, where p << n.
If p becomes too large, the segments between the beads have too few bonds to
be considered Gaussian chains, and the model breaks down.
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iii) Why is Equation 1 no longer valid when p approaches n? In what time interval can
we therefore apply this model?

The model assumes that the polymer segments behave like Gaussian chains.
For Rouse’s model to be valid, the number of bonds per segment (related to p)
should be large enough such that the chain segments can be treated as
statistically independent and have a Gaussian distribution of their
conformations. However, as p gets closer to n, the segments become
increasingly short, and the Gaussian approximation no longer holds.

Therefore, the model is only valid when p << n, meaning the segments are long
enough to maintain the Gaussian chain behavior. In terms of the relaxation
time 7, this condition translates to the model being applicable for times 7,
that satisfy:

T, <t<oc with p<Ln

3. In the case of an entangled but not crosslinked polymer, the behavior can be simulated
very simply by posing 7, = 74 if p < pe.

i) What do 7p and 74 mean?

74 is the relaxation time of a given mode, 74 is the disentanglement time (how
long it takes for the chain to escape the entanglement constraints), and pe. is
the critical mode number below which relaxation is blocked by the
entanglement.

ii) Inthe tube model, the tube diameter, d., is given by

Me

de = 1/Tl,el = Fbl
What do Me and M, mean?
M.: entanglement molecular weight, which represents the molar mass of the

polymer chain between two entanglement points.

My: this is the average molar mass per bond, which corresponds to the molar
mass of a single chemical bond in the polymer chain (i.e. the molar mass of half
a monomer unit in case of polyethylene)
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iii) Show also that the length of the tube L can be expressed as:

M |M,
L=— |21
Me Mb

The total polymer chain consists of M/M. subchain segments separated by
entanglement points. Each segment has a length d..

iv) According to Rouse's model, the diffusion coefficient of a chain inside the tube is

o kM,
M

Schow that

3

_&1E MN? o, M)
Te_67r2kT(Mb) and  7q =6 (M te

e

Tip: to find the relationship between 7, and 7, start by using Fick’s law to express
T4, and then multiply and divide by z,.

We have already shown that

el

te ¥ enzkT

In analogy, we can now write using the expression from ii) with n. being the
number of bonds between entanglement points:

Eone2l2 &, (Me>2
te X 6n2kT ~ 6m?kT \M,

For t,; we use Fick’s law, the expression of the diffusion coefficient according
to Rouse (see Slides), the expression for L from iii). For finding a relation to 7,
let us then just multiply and divide by 7, using the expression from above:

2 2
o 2 &M (M M, \ &M (M M, \ 6n?kTt, 2 (M)3T
=== - == — - == PR I
Dp ~ kTM,\ M, |M, kTMy\ M, |M, | & n,2I2 M,) ¢
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v) Show schematically the behavior of an entangled chain by indicating 7. and 74 on a
plot of shear modulus G(t) versus time t.

We must use the usual diagram of the elastic behavior of an amorphous
polymer in the linear domain, i.e. G (or E) vs. log t, with the glassy regime, the
glass transition, the rubbery plateau and the terminal zone, plus the right
orders of magnitude. 7. marks the beginning of the rubbery plateau, where
entanglement effects start to dominate the polymer’s mechanical response. 74
marks the end of the rubbery plateau, where the chain has fully disentangled
and begins to exhibit a liquid-like response (see Slide 290).
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