
EPFL STI IMX LMOM 
MXG 037, Station 12 
CH-1015 Lausanne 

Dr. Daniel Görl 
daniel.gorl@epfl.ch 
lmom.epfl.ch 

School of Engineering 
Institute of Materials 
Laboratory of Macromolecular 
and Organic Materials 
Suite de votre unité 
 

 

 

School of Engineering 
Institute of Materials 
Laboratory of Macromolecular 
and Organic Materials 

1 

 

Polymer Science 2024/25 

Exercise 9 – Solution 

 
 

1. As	already	mentioned	in	the	previous	exercise	sheet,	Rouse's	model	does	not	work	well	
for	diluted	solutions	because	 it	does	not	 take	hydrodynamic	effects	 into	account	 (for	
this,	we	need	the	Zimm	model).	However,	it	works	well	for	chains	in	a	polymer	melt	as	
long	as	entanglement	effects	are	not	important	(in	this	case,	the	other	chains	act	as	a	
very	viscous	solvent).	

i)  	 Rouse-like	behavior	can	therefore	be	expected	if	the	molar	mass,	M,	is	less	than	a	
certain	critical	molar	mass,	Mc	=	2Me.	What	does	Me	mean	here?	Explain,	using	the	
entanglement	network	model,	how	we	can	determine	Me	from	the	shear	modulus,	
which	corresponds	to	the	rubbery	plateau.	

The	entanglement	molecular	weight	Me	 represents	 the	characteristic	molar	
mass	between	entanglement	points	in	a	polymer.	Entanglements	occur	when	
polymer	 chains	 become	 so	 intertwined	 that	 their	motions	 are	 significantly	
restricted	by	neighboring	chains.	

Let	us	recall	the	entanglement	network	model:	in	the	rubbery	plateau	region,	
a	polymer	behaves	like	a	crosslinked	network.	The	shear	modulus	G	 in	this	
region	 arises	 from	 entanglement	 interactions	 between	 chains,	 and	 can	 be	
related	to	the	number	of	entanglements	per	unit	volume	Ne.	For	a	polymer	in	
the	rubbery	state,	the	shear	modulus	is	given	by	G	=	NekT	(this	is	analogous	to	
the	shear	modulus	of	an	actual	elastomer,	where	the	shear	modulus	is	G	=	NkT,	
with	 N	 representing	 the	 number	 of	 subchains	 per	 unit	 volume	 (which	
corresponds	 to	 the	 chain	 lengths	 between	 crosslinking	 points).	 The	
entanglement	molar	mass,	𝑴𝒆,	can	be	expressed	as	the	product	of	the	number	
of	segments	between	entanglement	points	per	unit	volume	(𝑵𝒂/𝑵𝒆)	and	the	
density,	𝝆:	

	 𝑀# =
𝑁$𝜌
𝑁#

	 	

Where	𝑵𝒂is	Avogadro’s	number.	Thus,	we	can	relate	the	shear	modulus	to	the	
molar	mass	between	entanglement	points	by	combining	the	two	expressions:	



EPFL STI IMX LMOM 
MXG 037, Station 12 
CH-1015 Lausanne 

Dr. Daniel Görl 
daniel.gorl@epfl.ch 
lmom.epfl.ch 

School of Engineering 
Institute of Materials 
Laboratory of Macromolecular 
and Organic Materials 
Suite de votre unité 
 

 

 

2 

School of Engineering 
Institute of Materials 
Laboratory of Macromolecular 
and Organic Materials 

	 𝑀# =
𝑁$𝜌
𝑁#

=
𝑘𝑇𝑁%𝜌
𝐺 =

𝑅𝑇𝜌
𝐺 	 	

ii) Rouse's	model	can	also	be	used	to	describe	fast	relaxation	modes	(high	p)	even	if	
M	>>	2Me,	because	these	are	associated	with	relatively	localized	movements	that	are	
not	hindered	by	the	entanglement.	In	contrast,	slow	relaxation	modes	that	involve	
the	 whole	 chain	 are	 blocked	 by	 entanglement.	 If	 we	 admit	 (and	 this	 is	 a	 big	
simplification!),	that	the	entanglement	mainly	affects	t1,	what	can	we	say	about	t1	if	
the	effects	of	the	entanglement	are	permanent?	What	does	Nm	represent	in	this	case?	

Entanglement	 restricts	 the	 chain’s	 motion	 and	 leads	 to	 a	 change	 in	 the	
relaxation	 behavior,	 particularly	 for	 the	 slow	 modes.	 If	 we	 consider	 the	
entanglement	to	have	a	permanent	effect	on	t1,	the	slow	relaxation	mode	(p	=	
1)	becomes	infinitely	long.	The	polymer	chain	is	effectively	trapped	in	place,	
and	prevented	 from	 fully	relaxing	or	moving	past	 the	entanglement	points.	
This	is	analogous	to	the	situation	in	a	chemically	crosslinked	network,	where	
the	polymer	chain	motion	is	restricted	by	the	crosslinks.	

In	this	case,	Nm	represents	the	entanglement	density,	which	is	the	number	of	
entanglement	points	per	unit	volume	of	the	polymer	(compare	to	Question	3v	
of	the	last	sheet).	

iii) We	have	seen,	however,	that	the	entanglement	is	not	permanent	and	that	we	can	
model	disentanglement	using	the	tube	model.	This	model	implies	that	a	chain	can	
recover	its	random	conformation	and	therefore	relax	all	the	stresses	resulting	from	
a	 deformation	 by	 diffusing	 outside	 a	 tube,	 which	 represents	 the	 topological	
constraint	 imposed	 by	 its	 neighbors,	 i.e.	 entanglement.	We	 can	 assume	 that	 the	
diffusion	coefficient	of	a	chain	along	this	tube	is	proportional	to	1/M.	Where	did	this	
result	come	from?	

The	diffusion	of	a	polymer	chain	 inside	 the	 tube	model	 is	described	by	 the	
process	of	 reptation,	 i.e.	 the	 idea	 that	 the	polymer	 chain	diffuses	along	 the	
tube	created	by	entanglements.	Over	time	the	chain	moves	out	of	its	confining	
tube,	thereby	relaxing	the	entanglement-induced	stresses.	

Rouse's	model	still	governs	the	local	motions	of	the	chain	segments	within	the	
tube.	 This	 means	 that	 the	 diffusion	 of	 chain	 segments	 within	 the	 tube	 is	
governed	by	the	same	dynamics	as	predicted	by	the	Rouse	model.	According	
to	Rouse,	the	diffusion	coefficient	is	proportional	to	1/M	(Slide	280).	

iv) Knowing	that	the	length	of	the	tube	must	be	proportional	to	M,	demonstrate	that	the	
disentanglement	time,	td,	is	proportional	to	M3.	
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We	start	with	Fick's	law	which	says	that	the	distance	diffused	in	time	t	is	given	
by	x2	=	Dt.	The	disentanglement	time	td		corresponds	to	the	time	it	takes	for	
the	polymer	chain	to	diffuse	a	distance	equal	to	the	length	of	the	tube	L	and	
thus	"escape"	the	entangled	region.	Using	Fick’s	law,	we	can	write:	

𝐿& = 𝐷𝜏' 	

𝑀& ∝
1
𝑀 𝜏' 			⟹ 				 𝜏' ∝ 𝑀(		

v) If	you	have	access	to	Excel,	Origin,	etc.,	plot	in	logarithmic	scales		

𝐺(𝑡) = 𝑁)𝑘𝑇8𝑒*+/-!
)

./0

	

as	 a	 function	 of	 t	 between	 0.01	 and	 100000	 s,	 taking	m	 =	 5,	 t1	 =	 100000	 s	 and	
tp	=	40/p2.	 Here,	we	 simulate	 the	 effect	 of	 entanglement	 by	 taking	 an	 arbitrarily	
large	value	for	t1.	Does	this	result	remind	you	of	anything?	

Plot	the	result	on	a	logarithmic	scale!	The	result	is	supposed	to	remind	you	of	
the	typical	rheological	curve	for	a	polymer,	which	shows	the	evolution	of	the	
modulus	over	the	logarithm	of	the	time	(or	the	temperature,	in	accordance	to	
the	 time-temperature	 equivalence)	 as	 the	 polymer	 undergoes	 different	
relaxation	processes.	

• At	short	times	(t	<	t5):		the	system	behaves	like	a	glassy	state,	where	the	
modulus	is	high,	due	to	the	very	slow	relaxation	of	the	polymer	chains.	

• At	 intermediate	times	(around	t5	 to	t1):	 the	 first	relaxation	time	t1	 is	
arbitrarily	 large,	simulating	a	strong	entanglement	effect,	 so	 that	 the	
system	exhibits	a	rubbery	plateau.	The	polymer	has	partially	relaxed	
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and	 shows	 a	 relatively	 constant	 value	 for	 the	modulus	 in	 agreement	
with	the	static	model	of	an	entanglement	network.	

• At	 long	 times	(t	>	t1):	 	The	system	transitions	 to	 liquid-like	behavior,	
where	the	modulus	decreases	as	the	polymer	chains	are	fully	relaxed	
and	the	material	behaves	more	like	a	viscous	fluid.	

Be	careful	with	this	interpretation,	though!	In	a	real	polymer,	the	modulus	in	
the	glassy	state	 is	some	three	orders	of	magnitude	higher	than	the	rubbery	
plateau.	Here,	the	value	is	rather	small	because	by	taking	m	=	5,	our	model	is	
no	longer	valid	for	t	<	t5	=	40/25,	i.e.	 less	than	one	second.	In	any	case,	this	
type	of	model	is	anyways	not	valid	in	the	glassy	state	because	the	viscosity	as	
well	as	the	relaxation	times	effectively	become	infinite	below	Tg.	For	T	<	Tg,	the	
modulus	 is	 dominated	 by	 van	 der	Waals	 forces	 and	 not	 by	 conformational	
changes	(we	ignore	for	a	moment,	 that	small	chain	segments	can	still	move	
below	Tg).	

2. We	will	 now	 simulate	 the	behavior	 of	 a	 freely	 jointed	polymer	 that	 is	 slightly	 cross-
linked.	

i) 				It	is	assumed	that	the	crosslinking	points	are	separated	along	the	chains	by	nx	bonds	
such	that	n	>>	nx	>>	m	and	that	the	positions	of	the	crosslinking	points	are	fixed	by	
the	macroscopic	 deformation.	 In	 this	 case,	 relaxations	 involving	 chain	 segments	
longer	than	nx	are	blocked,	leading	to	infinite	relaxation	times	for	these	modes:	

	 :𝜏. ≈
𝜉1𝑛&𝑙&

6𝜋&𝑝&𝑘𝑇
, 𝑓𝑜𝑟				𝑚 ≫ 1, 𝑝 > 𝑝2

𝜏. = ∞																							𝑓𝑜𝑟				𝑝 < 𝑝2
	 (1)	

Express	px	(the	critical	mode	number	where	relaxations	become	blocked)	and	𝜏x	(the	
maximum	relaxation	time	for	modes	that	are	not	blocked)	in	terms	nx!	

The	number	of	segments	involved	in	mode	p	is	equal	to	n/p.	The	critical	value	
of	p,	denoted	as	px	,	below	which	the	movements	are	blocked	corresponds	to	
nx:	

	 𝑝2 =
𝑛
𝑛2
	 	

For	this	critical	mode,	the	relaxation	time	𝜏x,	which	corresponds	to	the	longest	
unblocked	relaxation	time	is:	
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	 𝜏2 =
𝜉1𝑛2&𝑙&

6𝜋&𝑘𝑇	
	

ii) According	to	the	phenomenological	models	(springs	and	dashpot)	generalized	for	a	
linear	viscoelastic	material,	the	relaxation	shear	modulus	is	given	by	

	 𝐺(𝑡) = 𝐺! +'𝐺"𝑒#$/&!
'

(

	 	

Show	that	the	effective	value	of	G∞	is	𝑁x𝑘𝑇,	where	𝑁x	is	the	number	of	crosslinking	
points	per	unit	of	volume.	Have	you	seen	this	result	before?	

Let’s	 use	 Rouse’s	 expression	 for	 the	 time-dependent	 shear	 relaxation	
modulus,	which	for	a	polymer	with	crosslinks	can	be	written	as	(in	analogy	to	
our	last	Exercise	Sheet).	In	the	present	case,	𝜏p	=	∞	if	𝑝	<	𝑝x,	i.e.	if	𝑝	<	𝑛/𝑛x.	

	 𝐺(𝑡) = 𝑁𝑘𝑇 8 𝑒*+/3
4/4"

./0

+ 𝑁𝑘𝑇 8 𝑒*+/-!
)

./4/4"

												𝜏. ≈
𝜉1𝑛&𝑙&

6𝜋&𝑝&𝑘𝑇 , for		𝑝 ≥ 𝑛/𝑛2 	 	

where	N	 is	 the	number	of	polymer	 chains	per	unit	 volume	 (chain	density).	
Here,	 the	 first	 sum	 corresponds	 to	 the	 modes	 𝑝	≤	𝑝x	=	𝑛/𝑛x,	 where	 the	
relaxation	times	are	infinite	due	to	the	crosslinking	(𝜏p	=	∞).	The	second	sum	
corresponds	to	the	modes	p	>	𝑝x,	where	the	relaxation	times	are	finite.	

For	the	long-time	limit,	the	second	sum	tends	to	zero	because	𝒕 ≫ 𝛕𝒑,	while	the	
modes	with	p	<	𝑝x	do	not	relax	and	contribute	a	constant	value	to	the	shear	
modulus,	leading	to:	

	 𝐺3 = 𝑁𝑘𝑇 8 𝑒*+/3
4/4"

./0

= 𝑁𝑘𝑇 8 1
4/4"

./0

=
𝑛𝑁𝑘𝑇
𝑛2

= 𝑁2𝑘𝑇	 	

where	𝑁x	is	the	number	of	crosslinks	per	unit	volume.	So,	if	t	>>	𝜏x,	we	find	the	
behavior	of	an	ideal	elastomer	with	a	shear	modulus	that	is	proportional	to	
the	crosslinking	density.	

Note	that	the	model	is	only	valid	for	times	in	the	range	𝜏p	<	t	<	∞,	where	p	<<	n.	
If	p	becomes	too	large,	the	segments	between	the	beads	have	too	few	bonds	to	
be	considered	Gaussian	chains,	and	the	model	breaks	down.	
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iii) Why	is	Equation	1	no	longer	valid	when	p	approaches	n?	In	what	time	interval	can	
we	therefore	apply	this	model?	

The	model	assumes	that	the	polymer	segments	behave	like	Gaussian	chains.	
For	Rouse’s	model	to	be	valid,	the	number	of	bonds	per	segment	(related	to	p)	
should	 be	 large	 enough	 such	 that	 the	 chain	 segments	 can	 be	 treated	 as	
statistically	 independent	 and	 have	 a	 Gaussian	 distribution	 of	 their	
conformations.	 However,	 as	 p	 gets	 closer	 to	 n,	 the	 segments	 become	
increasingly	short,	and	the	Gaussian	approximation	no	longer	holds.	

Therefore,	the	model	is	only	valid	when	p	<<	n,	meaning	the	segments	are	long	
enough	to	maintain	the	Gaussian	chain	behavior.	 In	terms	of	 the	relaxation	
time	𝜏p,	 this	condition	translates	 to	 the	model	being	applicable	 for	 times	𝜏p	
that	satisfy:	

	 𝜏. < 𝑡 < ∞					with						𝑝 ≪ 𝑛		 	

3. In	the	case	of	an	entangled	but	not	crosslinked	polymer,	the	behavior	can	be	simulated	
very	simply	by	posing	𝜏p	=	𝜏d	if	𝑝	<	𝑝e.	

i) 				What	do	𝜏p	and	𝜏d	mean?	

𝜏d	is	the	relaxation	time	of	a	given	mode,	𝜏d	is	the	disentanglement	time	(how	
long	it	takes	for	the	chain	to	escape	the	entanglement	constraints),	and	𝑝e	is	
the	 critical	 mode	 number	 below	 which	 relaxation	 is	 blocked	 by	 the	
entanglement.	

ii) In	the	tube	model,	the	tube	diameter,	de,	is	given	by	

𝑑# = W𝑛#𝑙 = X
𝑀#

𝑀6
𝑙	

What	do	Me	and	Mb	mean?	

Me:	entanglement	molecular	weight,	which	represents	the	molar	mass	of	the	
polymer	chain	between	two	entanglement	points.		

Mb:	this	is	the	average	molar	mass	per	bond,	which	corresponds	to	the	molar	
mass	of	a	single	chemical	bond	in	the	polymer	chain	(i.e.	the	molar	mass	of	half	
a	monomer	unit	in	case	of	polyethylene)	
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iii) Show	also	that	the	length	of	the	tube	L	can	be	expressed	as:	

𝐿 =
𝑀
𝑀#

X
𝑀#

𝑀6
𝑙	

The	 total	 polymer	 chain	 consists	 of	M/Me	 subchain	 segments	 separated	 by	
entanglement	points.	Each	segment	has	a	length	de.	

iv) According	to	Rouse's	model,	the	diffusion	coefficient	of	a	chain	inside	the	tube	is	

𝐷7 =
𝑘𝑇𝑀6

𝜉1𝑀
	

Schow	that	

𝜏# =
𝜉1𝑙&

6𝜋&𝑘𝑇 Y
𝑀#

𝑀6
Z
&

							and										𝜏' = 6𝜋& Y
𝑀
𝑀#
Z
(

𝜏# 			

Tip:	to	find	the	relationship	between	𝜏' 	and	𝜏# ,	start	by	using	Fick’s	law	to	express	
𝜏' ,	and	then	multiply	and	divide	by	𝜏# .	

We	have	already	shown	that		

𝜏# ≈
𝜉1𝑛2&𝑙&

6𝜋&𝑘𝑇 	

In	analogy,	we	can	now	write	using	the	expression	from	ii)	with	ne	being	the	
number	of	bonds	between	entanglement	points:	

𝜏# ≈
𝜉1𝑛#&𝑙&

6𝜋&𝑘𝑇 =
𝜉1𝑙&

6𝜋&𝑘𝑇 Y
𝑀#

𝑀6
Z
&

	

	 For	𝝉𝒅,	we	use	Fick’s	law,	the	expression	of	the	diffusion	coefficient	according	
to	Rouse	(see	Slides),	the	expression	for	L	from	iii).	For	finding	a	relation	to	𝝉𝒆,	
let	us	then	just	multiply	and	divide	by	𝝉𝒆	using	the	expression	from	above:	

𝜏' =
𝐿&

𝐷7
=

𝜉1𝑀
𝑘𝑇𝑀6

_
𝑀
𝑀#

X
𝑀#

𝑀6
𝑙`

&

=
𝜉1𝑀
𝑘𝑇𝑀6

_
𝑀
𝑀#

X
𝑀#

𝑀6
𝑙`

&
6𝜋&𝑘𝑇𝜏#
𝜉1𝑛#&𝑙&

= 6𝜋& Y
𝑀
𝑀#
Z
(

𝜏# 			
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v) Show	schematically	the	behavior	of	an	entangled	chain	by	indicating	𝜏e	and	𝜏d	on	a	
plot	of	shear	modulus	G(t)	versus	time	t.	

We	 must	 use	 the	 usual	 diagram	 of	 the	 elastic	 behavior	 of	 an	 amorphous	
polymer	in	the	linear	domain,	i.e.	G	(or	E)	vs.	log	t,	with	the	glassy	regime,	the	
glass	 transition,	 the	 rubbery	 plateau	 and	 the	 terminal	 zone,	 plus	 the	 right	
orders	of	magnitude.	𝜏e	marks	the	beginning	of	 the	rubbery	plateau,	where	
entanglement	effects	start	to	dominate	the	polymer’s	mechanical	response.	𝜏d	
marks	the	end	of	the	rubbery	plateau,	where	the	chain	has	fully	disentangled	
and	begins	to	exhibit	a	liquid-like	response	(see	Slide	290).	

	


